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“As far as the laws of mathematics refer to reality, they are not certain, and

as far as they are certain, they do not refer to reality.”

Albert Einstein
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The flow is on boundary layer. The assumptions on the fluid are that it be viscous,

incompressible, steady and laminar. The ordinary differential equations are obtained by

applying similarity transformation on partial differential equations. Then the system is

solved by using the shooting method. Software Matlab is used to compute the numerical

results and the resulting values are shown through graphs and tables. Effects of viscous

dissipation, Joule heating and thermal radiation are also discussed.
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Chapter 1

Introduction

The study of fluid on a stretching surface is one of the important problem discussed in

the current era as it occurs in different engineering processes like extrusion, wire draw-

ing, melt-whirling, production of glass fiber, manufacturing of rubber sheets and cooling

of huge metallic plates such as an electrolyte. In the immediate surroundings of fluid

the light polymer sheet composes a nonuniformly moving plane[1]. Through consecutive

experiments, it is proved that the distance of the slot and velocity of stretching sur-

face are consistent. By applying the uniform stress, the sheet bears the incompressible

flow which was first studied by Crane [1]. This problem attracted other mathematicians

as well, who solved this problem further by considering different physical conditions [2-5].

Nanoparticles are particles between 1 and 100 nanometers in size. Nanofluids are ob-

tained by the dispersion of nanoparticles with basefluid. This type of fluid is from a new

class of nanotechnology which is based on heat transfer. The purpose of nanofluids is

to approach the maximum thermal properties at smallest possible concentration. The

developments of nanofluids possess superior thermal conductivity and enhanced heat

transfer characteristics. Nanofluids are homogenous mixture of nanoparticles and base

fluid. Some common nanoparticles include carbons in different forms like diamond and

grphite carbon nanotubes, oxide ceramics Al2O3(Aluminium Oxide), CuO(Copper Ox-

ide), metal nitrides AlN(Aluminium Nitride), SiN(Silicon Nitride), etc. All nonmetallic

and metallic particles change the transport properties and heat conduction character-

istics of the base fluids like water, organic liquids, e.g. ethylene, refrigerants, etc. In

1
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fact the enhanced thermal conductivity is based on the nanoparticles while the effec-

tiveness of heat transfer enhancement also depends upon the amount of particle shape,

dispersed particles, material type, etc. The use of additives is one of the another way

to enhance the heat transfer capacity of base fluids. Recent research proved that such

techniques can improve the thermal conductivity and heat transport properties of the

base fluid and consequently the energy efficiency. In 1995, Choi [6] made the analysis of

nanoparticles and he was the first who has done work in this direction. Boungiorno et

al. [7] showed the great fact that thermal conductivity of the conventional heat transfer

liquids increased up to approximately two times by adding only the very small amount

of nanoparticles in the fluid, that is, less than 1 by volume. Heat transport of nanofluids

inside an enclosure for the solid particles dissipation was examined by Khanafer et al. [8].

Magnetohydrodynamic boundary layer stream is of great importance as it can be con-

nected in various zones of businesses also in utilizations of geothermal. Because of its

extensive variety of uses, numerous scientists have examined the attractive field im-

pact on the liquid stream issues [9-20]. Recently, Hakeem et al. [21] concentrated the

attractive field impact on second request slip stream of single stage nanofluid over an ex-

tending sheet. The connection of normal convection with thermal radiation is expanded

incredibly amid the most recent decade because of its significance in numerous handy

contributions. At the point when free convection streams happen at high temperature,

radiation impacts on the stream get to be distinctly noteworthy. Radiation consequences

for the free convection stream are critical in setting of space innovation, forms in design-

ing ranges occuring at high temperature. In view of these applications, Olanrewaju et

al. [22] examined the limit layer stream of nanofluids within the sight of radiation past

a moving semi-unending level plate in a uniform free stream. Poornima et al. [23] broke

down the synchronous impacts of warm radiation on warmth and mass exchange stream

of nanofluids over a non-straight extending sheet. As of late, Turkyilmazoglu and Pop

[24] concentrated the warm radiation impacts on the stream of single stage nanofluid

over a vast vertical plate.

Viscous dissipation is quite often a negligible effect, but its contribution might become

important when the fluid viscosity is very high. Rate of heat transfer is affected by the

variation in temperature distribution. Anjali Devi and Ganga [25] studied the MHD
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flow over a porous stretching sheet under the influence of Joule heating and viscous dis-

sipation. Boundary layer flow along with the effects of viscous dissipationa and thermal

radiation over a moving flat plate were studied by Motsumi and Makinde [26]. Very

recently, Makinde and Mutuku [27] investigated the thermal boundary layer of hydro-

magnetic nanofluids over a heated plate under the impact of Ohmic heating and viscous

dissipation. The analysis of effects of heat absorption and generation is very important

in cooling processes. Although, correct displaying of internal heat generation or reten-

tion is very troublesome, some basic scientific models can express its normal conduct

for most physical circumstances. Ahmed et al. [28] investigated the impacts of heat

sink/source on the boundary layer flow of single phase nanofluid over a stretching tube.

Very recently, Akilu and Narahari [29] studied numerically the impact of internal heat

absorption of a nanofluid on natural convection flow over an inclined plate numerically.

It is important to mention here that some practical applications where the significant

temperature distribution between the surface of the body and the temperature at infin-

ity exists. The temperature distribution may cause the change in density within fluid

medium or free convection due to more important existence of gravitational head. There

are some circumstances where the liquid moves along with the vertical stretching sheet.

In such cases, there may be some buoyancy forces due to force convection and the heat

transfer distribution determined by two setups namely, the movement of stretching sheet

and the gravitational effects. The thermal buoyancy is produced due to the heating/-

cooling of a vertical movement of stretching sheet that becomes a large influence on the

flow and heat transfer mechanism when hot fluid is moving horizontally.

Electromagnetic emissions from a surface with temperature greater than absolute zero

are known as thermal radiations. These radiations can be visible, infrared or sunlight

and their visibility depends on the nature of the material emitting these radiations. S-

ince last few decades, one of the major concern in the field of science and technology

is projecting source of renewable energy and this technology is mostly characterized as

both active and passive solar energy. Viskant and Grosh [30] noted that these radiation-

s become important factors when considering the cooling systems, hypersonic flights,

combustion chambers and power plants.
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1.1 Organization of dissertation

The main objective of this study is to review the problem of MHD nanofluid flow due

to a stretching surface. Main fundamental equations attained from law of conservation

of momentum and energy are then transformed into the system of coupled nonlinear

ordinary differential equations by means of suitable similarity transformation and they

are solved numerically by using shooting method. The same problem is discussed under

the effect of viscous dissipation, Joule heating and thermal radiations and the resulting

equations again are transformed by means of similarity transformation and are solved

numerically by using shooting method. This dissertation is organized in following chap-

ters.

• Chapter 1 includes the discussion on the literature of the relevant topics.

• Chapter 2 describes the basic ideas and terminologies which are helpful for un-

derstanding the dissertation.

• Chapter 3 consists of review of flow and heat transfer analysis of MHD nanofluid

due to convective stretching sheet.

• Chapter 4 gives the details of the generalization of the work presented in chapter

3, under the effects of Joule heating, viscous dissipation, and thermal radiation.

Conclusion and summary of the dissertation is also included in this chapter.



Chapter 2

Preliminaries

In this chapter some basic definitions, concepts and fundamental laws are described

which will be useful for the understanding in the subsequent chapters.

2.1 Basic Definitions

Definition 2.1.1. (Fluid) Fluid is a substance that shows continuous deformation

under the effect of shear stress.

Definition 2.1. (Fluid dynamics) The study of fluids and its characteristics at motion

is known as fluid dynamics.

Definition 2.1.2. (Fluid statics) Fluid statics is that branch of fluid dynamics which

focuses on the study of fluids at rest.

Definition 2.1.3. (Viscosity) When the layers of fluids try to slip by one another,

the intermolecular friction is exerted which creates resistance in fluid. This frictional

property of fluid is called viscosity.

Definition 2.1.4. (Dynamic viscosity) The ratio of shear stress and the rate of shear

strain is called dynamic viscosity. The internal resistance of fluid is measured by dynamic

viscosity.

Definition 2.1.5. (Kinematic viscosity) It is the ratio of dynamic viscosity µ and

the density ρ of any base/working fluid. No force is involved in kinematic viscosity.

5
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Mathematically it is given as

ν =
µ

ρ
.

Here µ represents the dynamic viscosity and ρ reprsents the density.

Definition 2.1.6. (Newton’s law of viscosity) It states that the shear stress is

comparable to the deformation rate of the fluid. Mathematically

τyx = µ
du

dy
,

where the symbol τyx is the shear stress, x and y represents horizontal and vertical

coordinates,u is the horizontal component of velocity, µ is the constant of proportionality

termed as dynamic viscosity while du
dy is the deformation rate.

Definition 2.1.7. (Newtonian fluids) All those fluids which obey the Newton’s law

of viscosity are known as Newtonian fluids. Gasoline and water are particular examples

of Newtonian fluids.

Definition 2.1.8. (Non-Newtonian fluids) The fluids disobeying Newton’s law of

viscosity are called non-Newtonian fluids. Examples are toothpaste, blood, ketchup,

drilling muds, biological fluids etc.. These fluids obey power law i.e.

τyx = k(
du

dy
)n,

where n represents the flow behaviour index and k the consistency index.

Definition 2.1.9. (Nanofluids) Nanofluids are a new technology based heat transfer

fluids which are obtained by dispersing and suspending nano-particles with dimensions or

order in nanometers. The purpose of the nanofluids is to achieve high thermal properties

at the smallest concentration.

Definition 2.1.10. (Laminar flow) The flow where the particles of fluid move in a

definite path and do not cross other’s path is called laminar flow.

Definition 2.1.11. (Incompressible flow) A flow where the volume and the the

density of the flowing fluid remains constant is known as incompressible flow. All liquids

are normally supposed to have incompressible flow.
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Definition 2.1.12. (Steady flow) Steady flow is a flow where properties of fluids do

not depend on time at each point in the flow. For such flows, we can write

dζ

dt
= 0,

where the symbol ζ is any fluid property.

Definition 2.1.13. (Thermal conductivity) The property of the material which is

related to the capacity of transmitting heat is called thermal conductivity, denoted by

κ. Mathematically,

κ =
q∇l
S∇T

,

where q is the heat passing through a surface area S and causing a temperature difference

∇T over a distance of ∇l. Here l, S and ∇T all are assumed to be of unit measurement.

Definition 2.1.14. (Thermal diffusivity) Thermal diffusivity can be defined as the

ratio of thermal conductivity and density and specific heat capacity at constant pressure.

It tells us that how much potential the material has for conducting thermal energy as

compared to store it. Thermal diffusivity is usually denoted by α, formulated as

α =
κ

ρcp
,

where cp denotes the specific heat capacity, κ the thermal conductivity and ρ the density.

2.2 Some fundamental laws

In this section, we will state the three conservation laws to obtain differential forms of

the fundamental governing equations that are required in the study of different fluid

flow problems.

Definition 2.2.1. ( Conservation of mass) According to this law, the mass dm

involved in any volume remains constant in the presence of source (place where the new

matter is introduced ) or sink (place where flowing matter can escape). It is stated in

the mathematical form as
∂ρ

∂t
+∇.(ρ~V ) = 0,
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here ρ denote the density of working fluid. If the fluid is incompressible ρ becomes

constant, so the equation takes the form

∇.(ρ~V ) = 0,

which gives

∇.~V = 0.

Definition 2.2.2. (Conservation of momentum) According to the law of conserva-

tion of linear momentum when all external forces which are acting on a system balance

each other, then the net momentum of the system remains constant. Mathematically,

ρ
D~V

Dt
= −∇p+∇.τ + ρ ~B,

where ρ, τ , p and ~B is the density, Cauchy stress tensor, pressure and body force

respectively. Further

τ = −pI + µA1,

A1 = L+ Lt,

L = grad~V .

For two dimension case, consider the following velocity and temperature field,

~V = Velocity field = [u(x, y), v(x, y), 0], T = temeprature = T (x, y),

where u and v are velocities along x and y direction respectively. As a result,

L =


ux uy 0

vx vy 0

0 0 0

 .

Definition 2.2.3. (Conservation of energy) According to the law of conservation

of energy, total energy involved in a given closed system remains unchanged except the

change of form. Mathematically,

ρ

[
∂h

∂t
+∇.(h~V )

]
=
Dp

Dt
+∇.(k∇T ) + φ̂,
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where ρ , τ , p, ∇ T and φ̂ is the density, specific enthalpy, temperature gradient and

dissipation function, respectively.

2.3 Heat transfer mechanism

Due to internal forces, heat transfer from higher temperature to the low temperature.

Heat transfer may occur in the following ways.

Definition 2.3.1. (Conduction) The transfer of heat from one body to another body

that are in direct contact with each other is called conduction.

Definition 2.3.2. (Convection) Convection is that mechanism of heat transfer which

includes changing location of molecules with time. This change in position causes a

higher temperature difference and higher rate of heat flux. There are three types of

convection.

(i) Forced convection

Forced convection is a heat transfer mechanism in which fan or pump or any other

device which acts as an outer source disturbs the fluid motion.

(ii) Natural convection

Natural convection also termed as free convection flow field is self continued flow

caused by the existence of temperature difference. The density and the buoyancy

of the fluid is affected by this convection. Natural convection occurs by the action

of density gradients in conjunction with a gravitational field. It is also called an

buoyant convection.

(iii) Mixed convection

Mixed convection is a combination of both forced and free convection. For example,

if fluid is moving vertically upward along the moment of the vertical stretching

sheet is forced convection while in the same phenomena fluid is freely falling due

to the gravity which is free convection. When these two phenomena appear in the

same model then such kind of flow is mixed convection.

Definition 2.3.3. (Radiation) Radiation is the emission of energy in the form of waves

or particles.
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Definition 2.3.4. (Boundary layer) Boundary layer is a flow layer of fluid close to

the solid region of the wall in contact where the viscosity effects are significants. The

flow in this layer is usually laminar. The boundary layer thickness is the measure of the

distance apart from the surface.

2.4 Some specific dimensionless numbers

In this section we will define some dimensionless numbers used in subsequent chapters.

(i) Prandtl number

Prandtl number gives the quantitative relation between the momentum diffusion

rate and thermal diffusion rate. Mathematically, it is defined as:

Pr =
ν

α
=

µ
ρ
κ
ρcp

=
µcp
κ
,

where the kinematic viscosity or momentum diffusivity is denoted by ν and the

thermal diffusivity is denoted by α. It gives the comparative thickness of velocity

and the domain of thermal boundary layers. For very very small values of Pr heat

diffuses rapidly as compared to the inertial force.

(ii) Nusselt number

It is defined as the ratio between transfer of heat by convection and heat transport

by conduction in the direction normal to the boundary. Mathematically,

Nux =
convective heat transfer coefficient

conductive heat transfer coefficient

Nux =
h∇T
κ∇T
L

=
hL

κ
.

Here h∇T represents heat transfer by convection, κ∇T
L the heat transfer by con-

duction, h the convective heat transfer, L the characteristic length and κ the

thermal conductivity of fluid.
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(iii) Biot number

We know that resistance of heat transfer is different inside of the material and at

the surface. Their ratio is called Biot number. Mathematically it is defined as

Bi =
hL

κ
,

here h is convective heat transfer, L represents the characteristic length and κ the

thermal conductivity of the fluid.

(iii) Lewis number

The Lewis number can be defined as the ratio of thermal diffusivity with molecular

diffusivity. It helps us to find the relationship between mass and heat transfer

coefficient. Mathematically,

Le =
λ

ρDmcp
,

where λ is the convective heat transfer coefficient, Dm the mixture-averaged dif-

fusion coefficient, and cp the specific heat capacity at constant pressure.

(iv) Brownian diffusion coefficient

Brownian diffusion occurs due to continuous collision between the molecules and

nanoparticle of the fluid. The Brownian diffusion coefficient DB is given by

DB =
KBTCc
3Πµdp

,

where Kb, T, Cc and µ represents Boltzmann constant, temperature, correction

factor and viscosity respectively.

(v) Thermophoretic diffusion coefficient

Thermophoresis diffusion occurs when particles diffuse due to the effect of tem-

perature gradient.The thermophoretic diffusion coefficient is given by

DT =
−υthT
ν∇T

,

where υth, T , ν and ∇T denote thermophoretic velocity, temperature, kinematic

viscosity and temperature gradient respectively.

(vi) Skin friction coefficient

Skin friction coefficient represents the value of friction which occurs when fluid
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moves across the surface. Mathematically

Cf =
2Tyx
ρU2

e

where Tyx is the shear stress at the wall, ρ the density and Ue the free-stream

velocity.

(vii) Sherwood Number

It is the nondimensional quantity which show the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically

Shx =
kL

D

here L is characteristic length, D is the mass diffusivity and k is the mass transfer

coefficient.

Definition 2.4.1. (Similarity transformation) Similarity transformation is a tool

used in mathematics, which helps us to transform the partial differential equations,

which occurs in a problem, into the system of coupled ordinary differential equations

(ODEs). The technique reduces a number of independent variables of the problem. It

can be stated in a way that it is a rule which combines the two independent variable to

get a new one.

Definition 2.4.2. (Viscous dissipation) The process in which the work done by fluid

in converted into heat is called viscous dissipation. It is an irreversible process,

Definition 2.4.3. (Thermal radiation) The ejection of electromagnetic waves from

the matters that have temperature higher than absolute zero is called thermal radiation.

Definition 2.4.4. (Joule heating) The heat which is produced due to flow of current

through conductor is called Joule heating.



Chapter 3

Flow and heat transfer analysis

MHD nanofluid due to convective

stretching sheet

3.1 Introduction

In the present chapter, we have reviewed [31] the MHD nanofluid flow at a boundary

layer over a stretching surface placed vertically. As discussed in [31], we have assumed

that fluid is steady, laminar and incompressible. By stretching the sheet linearly in

the x-direction by fixing the origin, the flow is generated. The nonlinear coupled ordi-

nary differential equations (ODEs) are obtained after converting the system of partial

differential equations by applying the similarity transformation. These equations are

numerically solved with the help of shooting method. Results are obtained for each

physical parameter involved in the equations.

3.2 Mathematical modeling

Consider a steady flow of an incompressible nanofluid in the region y > 0 induced by a

permeable stretching surface located at y = 0 with a fixed origin at x = 0 as displayed

in figure (3.1). From the slot at the origin thin solid surface is extruded which is being

stretched in x-direction. The stretching velocity uw(x) = cx is assumed to vary linearly

13
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Figure 3.1: Geometry

from the origin, where c is a positive constant (c > 0). It is also assumed that the

temperature and nanofluid volume fraction at the surface of the sheet are respectively

Tw and Cw, while the uniform temperature and the nanofluid volume fraction far from

the surface of the sheet are T∞ and C∞, respectively. The magnetic field of strength Bo

is applied perpendicular to the stretching sheet. The flow is described by the equation

of continuity, equation of momentum and energy equation as

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB

2
0

ρ
u, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂y2

)
+ τ

[
DB

(
∂C

∂y

∂T

∂y

)
+
DT

T∞

(
∂T

∂y

)2]
, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

(
∂2C

∂y2

)
+
DT

T∞

(
∂2C

∂y2

)
. (3.4)

where ν = µ
ρ is the kinematic viscosity, ρ is the fluid density, σ is the electrical con-

ductivity, B0 is the magnetic field imposed along y-axis, T represents the temperature

of fluid, α is the thermal diffusivity, cp the specific heat capacity of the nanoparticle

material, C the nanoparticle fluid concentration, DB represents the Brownian diffusion

coefficient, and DT is the thermopheretic diffusion coefficient. The perpendicular and

parallel coordinates to the surface are y and x, the components of velocity are u and v
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in the direction of x and y. Boundary conditions can be written as

u = uw(x), v = vx, −K
∂T

∂y
= h1(Tw − T ), −DB

∂C

∂y
= h2(Cw − C) at y = 0, (3.5)

u −→ 0, T −→ T∞, C −→ C∞ as y −→∞ (3.6)

In the above equations, T is fluid temperature, T∞ the surrounding temperature, hs the

heat transfer coefficient, ν is the kinematic viscosity and α the thermal diffusivity. The

equation of continuity can be justified if a stream function ψ is chosen in a way that

u =
∂ψ

∂y
and v = −∂ψ

∂x
.

Introduce the following similarity transformation,

ψ = (av)
1
2xf(η), η =

(
a

v

) 1
2

y,

θ(η) =
T − T∞
Tw − T∞

,

θ(η) =
C − C∞
Cw − C∞

.

By introducing the similarity transformation defined as above, equations (3.2) − (3.4)

becomes

f ′′′ + ff ′′ − (f ′)2 −Mf ′ = 0, (3.7)

θ′′ + Pr[fθ′ +Nbθ′φ′ +Nt(θ′)2] = 0 (3.8)

θ′′ + Leθ′ +
Nt

Nb
θ′′ = 0 (3.9)

where

M =
σB2

0

ρa
, Pr =

ν

α
, Nb = τDB

(Cw − C∞)

ν
,

Nt = τDT
(Tw − T∞)

νT∞
and Le =

α

DB
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The associated boundary conditions (3.5) and (3.6) get the form,

f(0) = fw f ′(0) = 1, θ′(0) = −Biθ(1− θ(0)), φ′(0) = −Biφ(1− φ(0)), (3.10)

θ → 0, φ→ 0 when η →∞ (3.11)

3.3 Numerical solution

In order to solve the above obtained ODEs , we have used the shooting method. To

solve the above system numerically, we have replaced the domain [0,∞) by the bounded

domain [0, η∞] where η∞ is some suitable finite real number. Let us use the notation

f = y1, θ = y4, φ = y6. Further denote f ′ = y′1 by y2, f
′′ = y′2 by y3, θ

′ by y5, φ
′ = y′6

by y7 to have the following system of first order ODEs.

y′1 = y2, y1(0) = fw (3.12)

y′2 = y3, y2(0) = 1 (3.13)

y′3 = y22 +My2 − y1y3, y3(0) = Y3 (3.14)

y′4 = y5, y4(0) = Y4 (3.15)

y′5 = −Pr(y1y5 +Nby5y7 +Nty
2
7), y5(0) = −Biθ(1− t) (3.16)

y′6 = y7, y6(0) = Y6 (3.17)

y′7 =
Nt

Nb
Pr(y1y5 +Nby5y7 +Nty

2
7)− Ley1y7, y7(0) = −Biφ(1− u). (3.18)

In the system of equations (3.12) − (3.18), the missing initial conditions Y3, Y4 and Y6

are to be chosen such that

y2(η∞, Y3, Y4, Y6) = 0, y4(η∞, Y3, Y4, Y6) = 0, y6(η∞, Y3, Y4, Y6) = 0. (3.19)

To solve the system of algebraic equations (3.19), we use the Newton’s method which

has the following iterative scheme
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Y

(k+1)
3

Y
(k+1)
4

Y
(k+1)
6

 =


Y

(k)
3

Y
(k)
4

Y
(k)
6

−


∂y2
∂Y3

∂y2
∂Y4

∂y2
∂Y6

∂y4
∂Y3

∂y4
∂Y4

∂y4
∂Y6

∂y6
∂Y3

∂y6
∂Y4

∂y6
∂Y6


−1

(η∞,Y
(k)
3 ,Y

(k)
4 ,Y

(k)
6 )


y
(k)
2

y
(k)
4

y
(k)
6


(Y

(k)
3 ,Y

(k)
4 ,Y

(k)
6 )

.

Let us now use the following notations:

∂y1
∂Y3

= y8,
∂y2
∂Y3

= y9, ...
∂y7
∂Y3

= y14,

∂y1
∂Y4

= y15,
∂y2
∂Y4

= y16, ...
∂y7
∂Y4

= y21,

∂y1
∂Y6

= y22,
∂y2
∂Y6

= y23, ...
∂y7
∂Y6

= y28.

With these new notation, the Newton’s iterative scheme get the following form.


Y

(k+1)
3

Y
(k+1)
4

Y
(k+1)
6

 =


Y

(k)
3

Y
(k)
4

Y
(k)
6

−

y9 y16 y23

y11 y18 y25

y13 y20 y27


−1

(η∞,Y
(k)
3 ,Y

(k)
4 ,Y

(k)
6 )


y
(k)
2

y
(k)
4

y
(k)
6


(Y

(k)
3 ,Y

(k)
4 ,Y

(k)
6 )

(3.20)

For the execution of the above iterative scheme, we differentiate equations (3.12)−(3.18)

with respect to each variable Y3, Y4, and Y6 to have the following IVP consisting of

system of twenty one ODEs:
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y′8 = y9, y8(0) = 0 (3.21)

y′9 = y10, y9(0) = 0 (3.22)

y′10 = 2y2y9 +My9 − [y8y3 + y1y10], y10(0) = 1 (3.23)

y′11 = y12, y11(0) = 0 (3.24)

y′12 = −Pr[y8y5 + y1y12 +Nb(y12y7 + y5y14) + 2Nty7y14], y12(0) = 0 (3.25)

y′13 = y14, y13(0) = 0 (3.26)

y′14 =
Nt

Nb
Pr[(y8y5 + y1y12) +Nb(y12y7 + y5y14) + 2Nty7y14]

− Le(y8y7 + y1y14), y14(0) = 0 (3.27)

y′15 = y16, y15(0) = 0 (3.28)

y′16 = y17, y16(0) = 0 (3.29)

y′17 = 2y2y16 +My16 − [y15y3 + y1y17], y17(0) = 0 (3.30)

y′18 = y19, y18(0) = 1 (3.31)

y′19 = −Pr[y15y5 + y1y19 +Nb(y19y7 + y5y21) + 2Nty7y21], y19(0) = −Biθ (3.32)

y′20 = y21, y20(0) = 0 (3.33)

y′21 =
Nt

Nb
Pr[(y15y5 + y1y19) +Nb(y19y7 + y5y21) + 2Nty7y21]

− Le(y15y7 + y1y21), y21(0) = 0 (3.34)

y′22 = y23, y22(0) = 0 (3.35)

y′23 = y24, y23(0) = 0 (3.36)

y′24 = 2y2y23 +My23 − [y22y3 + y1y24], y24(0) = 0 (3.37)

y′25 = y26, y25(0) = 0 (3.38)

y′26 = −Pr[y22y5 + y1y26 +Nb(y26y7 + y5y28) + 2Nty7y28], y26(0) = 0 (3.39)

y′27 = y28, y27(0) = 1 (3.40)

y′28 =
Nt

Nb
Pr[(y22y5 + y1y26) +Nb(y26y7 + y5y28) + 2Nty7y28]

− Le(y22y7 + y1y28), y28(0) = −Biφ . (3.41)

The above equations are solved using Runge-Kutta method of order 4 with an initial
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guess Y
(0)
3 , Y

(0)
4 , Y

(o)
6 . These guesses are updated by the Newton’s method. The iterative

process is repeated untill the following criteria is met

max(| y2(η∞)− |, | y4(η∞)− |, | y6(η∞)− |) < ε,

where ε > 0 is the tolerance . For all computation in this chapter, we have fixed ε = 10−8.

The results are compared with [32-35] and we concluded that results are acceptable.

3.4 Results and discussion

Table 3.1 shows the comparison of calculated values with [32-35] and strong agreement

with the values is found which showed high confidence of present simulation. From

table it is observed that Nusselt number is increased by increase of Prandtl number.

Table 3.2 shows the skin-friction coefficient(−f ′′(0)) increases by the increase of M. The

effect of M on Nusselt number (−θ′(0)) and Sherwood number (−φ′(0)) is opposite

as compared to skin-friction coefficient. The magnitude of skin-friction coefficient also

increases by increasing the suction parameter. Sherwood number increases by increasing

Lewis number. Effects of thermal and concentration Biot number are similar.

Pr [32] [33] [34] [35] Current values

0.70 0.4539 0.5349 0.4539 0.4539 0.4539
2.00 0.9114 0.9114 0.9113 0.9114 0.9114
7.00 1.8954 1.8905 1.8954 1.8954 1.8954

Table 3.1: Comparison of results of (−θ′(0)) in the absence of nanoparticles on variou
values of Prandtl number if M = fw = 0 and Biθ and Biφ →∞

Figures 3.1, 3.2 and 3.3 show the effect of magnetic parameter on velocity profile, tem-

perature distribution and concentration distribution respectively. It can be seen from

the figures that thickness of velocity boundary layer is decreased by the increase of

magnetic parameter whereas temperature and concentration distribution show a little

increase with the increase in magnetic parameter. It is due to the Lorentz force which

is created by applying magnetic field to the conducting fluid. Lorentz force has the

capacity to reduce the speed of flow which supports our results. By applying magnet-

ic field on the fluid, the resistance on the fluid particles increases which results in the

increase in temperature. Figures 3.4 and 3.5 represent the effect of Brownian motion
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M Le fw Nt Nb Bi1 Bi2 -f ′′(0) -θ′(0) -φ′(0)

0 1 1 0.1 0.1 0.1 0.1 1.076829 0.236852 0.337043
1 1.276822 0.226852 0.321234
2 1.364217 0.216854 0.317043
3 1.442316 0.202315 0.306044
1 1 1 0.1 0.1 0.1 0.1 1.076859 0.236855 0.307041

0.3 1.076859 0.236855 0.307041
0.5 1.076858 0.236855 0.307042
0.7 1.076858 0.236854 0.307042

0.1 0.1 1.076859 0.236854 0.307042
0.3 1.176761 0.236859 0.307048
0.5 1.266862 0.236860 0.307048
0.7 1.396865 0.236861 0.307049

1 1 1 0.1 0.1 0.1 0.1 1.076862 0.236861 0.307049
2 1.176853 0.246862 0.317051
3 1.257686 0.256871 0.325052
4 1.346869 0.266846 0.332054

1 1 0 0.1 0.1 0.1 0.1 1.076862 0.236864 0.307055
1 1.176565 0.236861 0.307055
2 1.276590 0.236859 0.307053
3 1.366558 0.236858 0.307051

1 1 1 0.1 0.1 0.1 0.1 1.076561 0.236561 0.307053
0.3 1.076563 0.236563 0.307055
0.5 1.076564 0.236564 0.307056
0.7 1.076565 0.236565 0.307058

1 1 1 0.1 0.1 0.1 0.1 1.076566 0.236567 0.307059
0.3 1.076568 0.236568 0.307063
0.5 1.076569 0.236569 0.307065
0.7 1.076572 0.236569 0.307069

Table 3.2: Numerical values of -θ′(0), -φ′(0) and f ′′(0) for different parameters

parameter and thermophoresis parameter on the profiles of temperature and concentra-

tion. An increase in Brownian motion parameter increase the temperature. Similarly by

increasing thermophoresis parameter increase in the concentration distribution is seen.

So distribution of nano particles can be adjusted by adjusting Brownian motion param-

eter. It can also be said that thermophoresis helps in diffusion of nano particles. Figure

3.6 reflects the effect of Lewis number on concentration profile. Lewis number can be

defined as the ratio of thermal diffusion to the molecular diffusion. It is convenient of

help us find the relation between mass and heat transfer coefficient. By increasing Lewis

number the concentration profile becomes more steeper. Figures 3.7, 3.8 and 3.9 rep-

resent the effect of suction parameter on velocity profile, temperature distribution and

concentration distribution. By increasing the suction parameter a decrease in velocity

profile, temperature distribution and concentration distribution is observed. If suction
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is applied on vertical surface it allows the fluid to draw in the surface which affects

the boundary layer thickness. Figures 3.10, 3.11, 3.12 and 3.13 represent the effect of

thermal Biot number and concentration Biot number on temperature and concentration

distribution. Increase in thermal and concentration Biot number increases the temper-

ature and concentration distribution. Increase in Biot numbers, increases heat transfer

coefficient which increases the temperature.

Figure 3.2: Influence of magnetic parameter on velocity profile when
Nb = Nt = Bi1 = Bi2 = 0.1 and Le = fw = 1

Figure 3.3: Influence of magnetic parameter on temperature distribution when
Nb = Nt = Bi1 = Bi2 = 0.1 and Le = fw = 1
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Figure 3.4: Influence of magnetic parameter on concentration distribution when
Nb = Nt = Bi1 = Bi2 = 0.1 and Le = fw = 1

Figure 3.5: Influence of Brownian motion parameter on temperature distribution if
Nt = Bi1 = Bi2 = 0.1 and M = Le = fw = 1

Figure 3.6: Effect of thermophoresis parameter on concentration distribution when
Nb = Bi1 = Bi2 = 0.1 and M = Le = fw = 1
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Figure 3.7: Influence of Lewis number on concentration distribution when
Nt = Nb = Bi1 = Bi2 = 0.1 and M = fw = 1

Figure 3.8: Influence of suction parameter on velocity profile when
Nb = Nt = Bi1 = Bi2 = 0.1 and Le = M = 1

Figure 3.9: Influence of suction parameter on temperature distribution when
Nt = Nb = Bi1 = Bi2 = 0.1 and Le = M = 1
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Figure 3.10: Influence of suction parameter on concentration distribution when
Nt = Nb = Bi1 = Bi2 = 0.1 and M = Le = 1

Figure 3.11: Influence of thermal Biot number on temperature distribution when
Nt = Nb = Bi2 = 0.1 and Le = M = fw = 1

Figure 3.12: Influence of thermal Biot number on concentration distribution when
Nt = Nb = Bi2 = 0.1 and Le = M = fw = 1
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Figure 3.13: Influence of concentration Biot number on temperature distribution if
Nt = Nb = Bi1 = 0.1 and Le = M = fw = 1

Figure 3.14: Influence of concentration Biot number on concentration distribution if
Nt = Nb = Bi1 = 0.1 and Le = M = fw = 1



Chapter 4

The effect of Joule heating,

viscous dissipation and thermal

radiation on the flow of MHD

nanofluid

In the present chapter, we have extended the study of [31]. We have discussed this

phenomena under the affect of viscous dissipation, Joule heating and thermal radiation

which are already defined in Chapter 2. Again the governing equation of this model are

solved numerically with the help of shooting method. Flow behavior , temperature dis-

tribution and concentration distribution within the boundary layer is described through

velocity, temperature and concentration profile.

Here we have considered the flow of MHD nanofluid fluid on a stretching surface.The

fluid is considered to be incompressible, laminar, and steady. The equation of continuity,

equation of momentum and the energy equation describing the given two dimensional

flow are given as

26
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∂u

∂x
+
∂v

∂y
= 0 (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB

2
0

ρ
u (4.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂y2

)
+ τ

[
DB

(
∂C

∂y

∂T

∂y

)
+
DT

T∞

(
∂T

∂y

)2]
+
ν

cf

(
(
∂u

∂y
)2

)

+
σB2

0

ρcf
u2 − 1

ρcf

∂qr
∂y

(4.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

(
∂2C

∂y2

)
+
DT

T∞

(
∂2C

∂y2

)
(4.4)

Rosseland approxiamation of radiation gives

qr = −4σ∗

3δ

∂T 4

∂y
,

where σ∗ is Boltzmann constant whose value is 1.38∗10−23 and δ represents the coefficient

of mean absorption, and value of T 4 is given by

T 4 = 4T 3
∞T − 3T 4

∞

Boundary conditions can be written as

u = uw(x), v = vx, −K
∂T

∂y
= h1(Tw − T ), −DB

∂C

∂y
= h2(Cw − C) at y = 0, (4.5)

u −→ 0, T −→ T∞, C −→ C∞ as y −→∞ (4.6)

In the above equations, T is temperature of the fluid, T∞ the surrounding temperature,

hs the heat transfer coefficient, ν the kinematic viscosity and α the thermal diffusivity.

The equation of continuity can be justified if a stream function ψ is chosen in a way that

u =
∂ψ

∂y
and v = −∂ψ

∂x
.

Introduce the given similarity transformation,



28

ψ = (av)
1
2xf(η), η = (

a

v
)
1
2 y,

θ(η) =
T − T∞
Tw − T∞

θ(η) =
C − C∞
Cw − C∞

By introducing the following similarity transformation defined above, equations (4.1)−

(4.4) gives

f ′′′ + ff ′′ − (f ′)2 −Mf ′ = 0, (4.7)

(1 +
4

3
N)θ′′ + Pr[fθ′ +Nbθ′φ′ +Nt(θ′)2 + Ecf

′′2 + EcM
2f ′

2
] = 0 (4.8)

φ′′ + Lefθ′ +
Nt

Nb
θ′′ = 0 (4.9)

The associated boundary conditions (4.7) and (4.8) get the form,

f(0) = fw f ′(0) = 1, θ′(0) = −Biθ(1− θ(0)), φ′(0) = −Biφ(1− φ(0)) (4.10)

f ′ → 0, θ → 0 φ→ 0 as η →∞ (4.11)

4.1 Numerical solution

In order to solve the above attained ODEs , we will use the shooting method. To solve

the above system numerically, we will replace the domain [0,∞) by the bounded domain

[0, η∞] where η∞ is some suitable finite real number. Let us use the notation f = y1,

θ = y4, φ = y6. Further denote f ′ = y′1 by y2, f
′′ = y′2 by y3, θ

′ by y5, φ
′ = y′6 by y7 to

have the following system of first order ODEs.
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y′1 = y2 y1(0) = fw (4.12)

y′2 = y3 y2(0) = 1 (4.13)

y′3 = y22 +My2 − y1y3 y3(0) = Y3 (4.14)

y′4 = y5, y4(0) = Y4 (4.15)

y′5 = − Pr

1 + 4
3N

(
y1y5 +Nby5y7 +Nty

2
7 + Ecy

2
3 + EcM

2y22

)
, y5(0) = −Biθ(1− t)

(4.16)

y′6 = y7, y6(0) = Y6 (4.17)

y′7 = −Nt

Nb

(
Pr

1 + 4
3N

)(
y1y5 +Nby5y7 +Nty

2
7 + Ecy

2
3 + EcM

2y22

)
− Ley1y7, y7(0) = −Biφ(1− u) (4.18)

In the system of equations (4.12) − (4.18), the missing initial conditions Y3, Y4 and Y6

are to be chosen such that

y2(η∞, Y3, Y4, Y6) = 0, y4(η∞, Y3, Y4, Y6) = 0, y6(η∞, Y3, Y4, Y6) = 0. (4.19)

To solve the system of algebraic equations (4.19), we use the Newton’s method which

has the following iterative scheme
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Let us now use the following notations:

∂y1
∂Y3

= y8,
∂y2
∂Y3

= y9, ...
∂y7
∂Y3

= y14,

∂y1
∂Y4

= y15,
∂y2
∂Y4

= y16, ...
∂y7
∂Y4

= y21,

∂y1
∂Y6

= y22,
∂y2
∂Y6

= y23, ...
∂y7
∂Y6

= y28.

With these new notation, the Newton’s iterative scheme get the following form.
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4 ,Y
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6 )

(4.20)

For the execution of the above iterative scheme, we differentiate equations (4.12)−(4.18)

turn by turn with respect to Y3, Y4, Y6 to have the following IVP consisting of system of

twenty one ODEs:

y′8 = y9, y8(0) = 0 (4.21)

y′9 = y10, y9(0) = 0 (4.22)

y′10 = 2y2y9 +My9 − [y8y3 + y1y10], y10(0) = 1 (4.23)

y′11 = y12, y11(0) = 0 (4.24)

y′12 = −Pr[y8y5 + y1y12 +Nb(y12y7 + y5y14) + 2Nty7y14], y12(0) = 0 (4.25)

y′13 = y14, y13(0) = 0 (4.26)

y′14 =
Nt

Nb

(
Pr

1 + 4N
3

)[
(y8y5 + y1y12) +Nb(y12y7 + y5y14) + 2Nty7y14

+ 2Ecy3y10 + 2EcM
2y2y9

]
− Le(y8y7 + y1y14), y14(0) = 0 (4.27)

y′15 = y16, y15(0) = 0 (4.28)

y′16 = y17, y16(0) = 0 (4.29)

y′17 = 2y2y16 +My16 − [y15y3 + y1y17], y17(0) = 0 (4.30)

y′18 = y19, y18(0) = 1 (4.31)

y′19 = −Pr[y15y5 + y1y19 +Nb(y19y7 + y5y21) + 2Nty7y21], y19(0) = −Biθ (4.32)

y′20 = y21, y20(0) = 0 (4.33)



31

y′21 =
Nt

Nb

(
Pr

1 + 4N
3

)[
(y15y5 + y1y19) +Nb(y19y7 + y5y21) + 2Nty7y21

+ 2Ecy3y17 + 2EcM
2y2y16

]
− Le(y15y7 + y1y21), y21(0) = 0 (4.34)

y′22 = y23, y22(0) = 0 (4.35)

y′23 = y24, y23(0) = 0 (4.36)

y′24 = 2y2y23 +My23 − [y22y3 + y1y24], y24(0) = 0 (4.37)

y′25 = y26, y25(0) = 0 (4.38)

y′26 = −Pr[y22y5 + y1y26 +Nb(y26y7 + y5y28) + 2Nty7y28], y26(0) = 0 (4.39)

y′27 = y28, y27(0) = 1 (4.40)

y′28 =
Nt

Nb

(
Pr

1 + 4N
3

)[
(y22y5 + y1y26) +Nb(y26y7 + y5y28) + 2Nty7y28

+ 2Ecy3y24 + 2EcM
2y2y23

]
− Le(y22y7 + y1y28), y28(0) = −Biφ . (4.41)

The above equations are solved using Runge-Kutta method of order 4 with an initial

guess Y
(0)
3 , Y

(0)
4 , Y

(o)
6 . These guesses are updated by the Newton’s method. The iterative

process is repeated untill the following criteria is met

max(| y2(η∞)− |, | y4(η∞)− |, | y6(η∞)− |) < ε,

where ε > 0 is the tolerance . For all computation in this chapter, we have fixed ε = 10−8.

4.2 Results and discussion

Table 4.1 shows the effect of N and Ec on skin-friction coefficient, Nusselt number and

Sherwood number. Increasing the values of N does not affect the skin friction coefficient.

By increasing N Nusselt number and Sherwood number also increases. Increasing Ec

gives the similar effect.

Figures 4.1, 4.2 and 4.3 show the effect of magnetic parameter on velocity profile, tem-

perature distribution and concentration distribution respectively. It can be seen from

the figures that velocity boundary layer thickness decreases with the increase in magnet-

ic parameter whereas temperature and concentration distribution show a little increase
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N Ec Le fw Nt Nb Bi1 Bi2 -f ′′(0) -θ′(0) -φ′(0)

0.1 1 1 1 0.1 0.1 0.1 0.1 1.231568 0.212301 0.312143
0.3 1.231568 0.223304 0.322146
0.5 1.231568 0.243095 0.332148
0.7 1.231568 0.252312 0.352155

0.1 1.156671 0.237845 0.317041
0.3 1.156673 0.247855 0.333045
0.5 1.156675 0.256859 0.347049
0.7 1.156679 0.267866 0.350152

Table 4.1: Numerical values of -f ′′(0), -θ′(0) and -φ′(0) for different parameters

with the increase in magnetic parameter. It is due to the Lorentz force which is created

by applying magnetic field to the conducting fluid. Lorentz force has the tendency to

reduce the speed of flow which supports our results. By applying magnetic field on

the fluid, the resistance on the fluid particles increases which results in the increase in

temperature. Figures 4.4 and 4.5 represent the effect of Brownian motion, parameter

and thermophoresis parameter on temperature and concentration profile. An increase

in Brownian motion parameter increase the temperature. Similarly increase in ther-

mophoresis parameter increases the concentration distribution. So distribution of nano

particles can be adjusted by adjusting Brownian motion parameter. It can also be said

that thermophoresis helps in diffusion of nano particles. Figure 4.6 reflects the effect

of Lewis number on concentration profile. Lewis number can be defined as the ratio of

thermal diffusion to the molecular diffusion. It is convenient of help us find the relation

between mass and heat transfer coefficient.By increasing Lewis number the concentra-

tion profile become more steeper. Figures 4.7, 4.8 and 4.9 show the effect of suction

parameter on velocity profile, temperature distribution and concentration distribution.

By increasing the suction parameter a decrease in velocity profile, temperature distribu-

tion and concentration distribution is observed. If suction is applied on vertical surface

it allows the fluid to draw in the surface which affects the boundary layer thickness.

Figures 4.10, 4.11 and 4.12 represent the effect of thermal Biot number and concentra-

tion Biot number on temperature and concentration distribution. Increase in thermal

and concentration Biot number increases the temperature and concentration distribu-

tion. Increase in Biot numbers, increases heat transfer coefficient which increases the

temperature. Fig. 4.13, 4.14 and 4.15 shows the effect of thermal radiation on velocity,

temperature and concentration profile respectively. By increasing thermal radiation,

increase in temperature and concentration profile is observed. Fig 4.16 and 4.17 shows
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the effect of viscous dissipation on temperature and concentration profile. It is observed

that increase in dissipation also increases temperature and concentration profile. Table

4.1 gives the values of temperature and concentration profile for different parameters

described.

Figure 4.1: Influence of magnetic parameter on velocity profile if
Ec = N = Nb = Nt = Bi1 = Bi2 = 0.1 and Le = fw = 1

Figure 4.2: Influence of magnetic parameter on temperature distribution if
N = Ec = Nb = Nt = Bi1 = Bi2 = 0.1 and Le = fw = 1
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Figure 4.3: Influence of magnetic parameter concentration distribution if
N = Ec = Nb = Nt = Bi1 = Bi2 = 0.1 and Le = fw = 1

Figure 4.4: Influence of Brownian motion parameter on temperature distribution if
N = Ec = Nt = Bi1 = Bi2 = 0.1 and M = Le = fw = 1

Figure 4.5: Influence of thermophoresis parameter on concentration distribution if
N = Ec = Nb = Bi1 = Bi2 = 0.1 and M = Le = fw = 1
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Figure 4.6: Influence of Lewis number on concentration distribution if
N = Ec = Nt = Nb = Bi1 = Bi2 = 0.1 and M = fw = 1

Figure 4.7: Influence of suction parameter on velocity profile if
Nt = Nb = Bi1 = Bi2 = 0.1 and M = Le = 1

Figure 4.8: Influence of suction parameter on temperature distribution if
Nt = Nb = Bi1 = Bi2 = 0.1 and M = Le = 1
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Figure 4.9: Influence of suction parameter on concentration distribution if
Nt = Nb = Bi1 = Bi2 = 0.1 and M = Le = 1

Figure 4.10: Influence of thermal Biot number on temperature distribution if
Nt = Nb = Bi2 = 0.1 and M = Le = fw = 1

Figure 4.11: Influence of thermal Biot number on concentration distribution if
Nt = Nb = Bi2 = 0.1 and M = Le = fw = 1
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Figure 4.12: Effect of concentration Biot number on temperature distribution when
Nt = Nb = Bi1 = 0.1 and M = Le = fw = 1

Figure 4.13: Effect of thermal radiation on velocity profile when
Nb = Nt = Bi1 = Bi2 = 0.1 and Le = fw = 1

Figure 4.14: Effect of thermal radiation on temperature profile when
Nb = Nt = Bi1 = Bi2 = 0.1 and Le = fw = 1
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Figure 4.15: Effect of thermal radiation on concentration profile when
Nb = Nt = Bi1 = Bi2 = 0.1 and Le = fw = 1

Figure 4.16: Effect of viscous dissipation on temperature profile when
Nb = Nt = Bi1 = Bi2 = 0.1 and Le = fw = N = 1

Figure 4.17: Effect of viscous dissipation on concentration profile when
Nb = Nt = Bi1 = Bi2 = 0.1 and Le = fw = N = 1
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4.3 Conclusion

In this dissertation,the behaviour of flow of MHD Nanofluid on a stretching sheet due

to convective boundary conditions at the boundary layer is discussed. The obtained

equations of the problem are converted into ODE’s using similarity transformation. By

the help of shooting method, the solution of given problem is obtained numerically and

the following results are observed:

(i) Increase in magnetic parameter decreases boundary layer thickness whereas in-

creases temperature and concentration profile.

(ii) Increase in Brownian motion parameter increases temperature.

(iii) Increase in thermophoresis parameter increases concentration profile.

(iv) Increase in suction parameter decreases velocity,temperature and concentration

profile.

(v) Increase in thermal and concentration Biot number increases temperature and

concentration profile.

(vi) Increase in thermal radiation increases temperature and concentration profile.

(vii) Increase in viscous dissipation increases temperature and concentration profile.
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